Left Termination of the query pattern
duplicate_in_2(g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
duplicate([], []).
duplicate(.(X, Y), .(X, .(X, Z))) :- duplicate(Y, Z).
Queries:
duplicate(g,a).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2) = duplicate_in_ga(x1)
[] = []
duplicate_out_ga(x1, x2) = duplicate_out_ga(x2)
.(x1, x2) = .(x1, x2)
U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2) = duplicate_in_ga(x1)
[] = []
duplicate_out_ga(x1, x2) = duplicate_out_ga(x2)
.(x1, x2) = .(x1, x2)
U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2) = duplicate_in_ga(x1)
[] = []
duplicate_out_ga(x1, x2) = duplicate_out_ga(x2)
.(x1, x2) = .(x1, x2)
U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2) = DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → U1_GA(X, Y, Z, duplicate_in_ga(Y, Z))
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2) = duplicate_in_ga(x1)
[] = []
duplicate_out_ga(x1, x2) = duplicate_out_ga(x2)
.(x1, x2) = .(x1, x2)
U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2) = DUPLICATE_IN_GA(x1)
U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
The TRS R consists of the following rules:
duplicate_in_ga([], []) → duplicate_out_ga([], [])
duplicate_in_ga(.(X, Y), .(X, .(X, Z))) → U1_ga(X, Y, Z, duplicate_in_ga(Y, Z))
U1_ga(X, Y, Z, duplicate_out_ga(Y, Z)) → duplicate_out_ga(.(X, Y), .(X, .(X, Z)))
The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2) = duplicate_in_ga(x1)
[] = []
duplicate_out_ga(x1, x2) = duplicate_out_ga(x2)
.(x1, x2) = .(x1, x2)
U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2) = DUPLICATE_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y), .(X, .(X, Z))) → DUPLICATE_IN_GA(Y, Z)
R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2) = .(x1, x2)
DUPLICATE_IN_GA(x1, x2) = DUPLICATE_IN_GA(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- DUPLICATE_IN_GA(.(X, Y)) → DUPLICATE_IN_GA(Y)
The graph contains the following edges 1 > 1